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ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ 
ВЫЧИСЛЕНИЕ КООРДИНАТ НА СФЕРЕ И НА СФЕРОИДЕ 

Главные геодезические задачи.  Главными называют прямую и обратную геодезические 
задачи. Пример прямой задачи – известны широта и долгота пункта А, азимут на пункт В и 
расстояние до него; найти широту и долготу пункта В. Обратная задача – известны широта и 
долгота пунктов А и В, найти расстояние между ними, прямой и обратный азимуты. 

Рассмотрим их решение на сфере, а затем на эллипсоиде вращения. Для многих картогра-
фических задач решения на сфере по точности являются приемлемыми. Однако в настоящее 
время системы спутникового позиционирования позволяют определять координаты точек с 
погрешностями от нескольких метров до первых сантиметров. Поэтому целесообразно иметь 
представление и о более точных способах решения главных геодезических задач. 

Геодезистами разработан ряд способов решения главных геодезических задач на эллип-
соиде вращения. Формулы довольно громоздки. Сложность формул зависит от требуемой 
точности определения широт, долгот, азимутов и длин линий между пунктами. 

С какой точностью следует вести вычисления. Для Земли погрешности в широте в 1′, 1″, 
0,1″, 0,01″, 0,001″ и 0,0001″ ведут к погрешностям в длинах дуг меридианов соответственно в 
1,85 км, 30 м, 3 м, 3 дм, 3 см и 3 мм. Например, если координаты достаточно знать с метро-
вой точностью, то широты и долготы следует знать до сотой доли угловой секунды. 

Когда погрешности угловых величин исчисляются минутами или их долями, а линейных – 
сотнями метров и километрами, задачи можно решать на земном шаре. Однако при больших 
расстояниях между пунктами погрешности в азимутах могут даже превысить 1° (табл. 4.1). 

Таблица 4.1 
Точность решения обратных геодезических задач на шаре и эллипсоидах 

Исходные данные:  
широта B1, 
широта B2, 
разность 
долгот, 

эллипсоид 

Длины S на 

эллипсоиде 

GRS-80, 

( м ) 

Отличия длин 
S и азимутов 
A на эллип-
соидах от ве-
личин на GRS-

80 

Отличия длин S 
и азимутов A на 
шаре радиуса 
R = 6371 км 

от величин на 
GRS-80 

50°07′, 
52°39′,  
0°15′, 

Красовского 

    281 255 
+ 5 м; 

– 0,004″ 

– 156 м; 

– 0,6′ 

37°20′, 
26°08′, 
41°29′, 

Хейфорда 

 4 085 798 
+ 169 м;  

– 1,2″ 

– 6,5 км; 

+ 4,9′ 

35°16′, 
67°22′, 
137°47′, 

Хейфорда 

 8 084 459 
+ 365 м; 

+ 0,50″ 

–20,0 км; 

– 1,8′ 

55°45′, 
-33°26′, 
108°13′, 
Бесселя 

14 112 077 
– 1550 м; 

+ 2,1″ 

+13,1 км; 

+11,5′ 

01°00′, 
01°01′, 
179°46′, 

Хейфорда 

19 780 007 
+ 644 м; 

– 17,1″ 

+ 8,9 км; 

± 86,6′ 
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В табл. 4.1 сопоставлены результаты решения обратных геодезических задач на шаре и на 
разных референц-эллипсоидах с результатами решений на общеземном эллипсоиде GRS-80 
(исходные данные первой строки взяты из учебного пособия [9], а данные остальных строк – 
из публикации [10]). 

На эллипсоиде чем расстояния между пунктами больше, тем формулы сложнее. Иногда 
выделяют следующие группы способов: 

• короткие расстояния – десятки километров; 
• средние расстояния – сотни километров; 
• большие расстояния – тысячи километров. 
В специальных случаях, например, в навигационной практике, прямую и обратную задачи 

решают не по геодезической линии, а по локсодромии - линии постоянного азимута, пересе-
кающей все меридианы под одним и тем же углом. 

Прямая задача на сфере. Пусть на сфере радиуса R лежат две точки Q1(ϕ1, λ1) и Q2(ϕ2, 
λ2), где ϕ - географическая широта, λ - географическая долго-
та. Точки соединены ортодромией, при этом α - ее азимут, σ - 
ее длина s, выраженная в долях радиуса сферы. Соединив за-
данные точки с полюсом, построим сферический полярный 
треугольник (рис. 4.1) [6]. 

В прямой задаче, как уже указывалось, даны географиче-
ские координаты ϕ1 и λ1 некоторой точки Q1, длина ортодро-
мии σ = s/R и ее прямой азимут α1; по этим данным требуется 
найти координаты ϕ2 и λ2, а также обратный азимут α2 в точке 
Q2. 

По теореме косинусов сферической тригонометрии опреде-
лим широту: 

.1112 cossincoscossinsin ασϕ+σϕ=ϕ  

Из теоремы котангенсов следует: 

)ctg(sincossincosctg 121111 λ−λα+αϕ=ϕσ  

Отсюда для разности долгот получаем: 

111

1
12 cossinsincoscos

sinsin
)g(t

αϕσ−ϕσ
ασ

=λ−λ . 

По теореме котангенсов получаем: 

2111 ctgsincoscossintg αα−ασ=σϕ  

Отсюда для обратного азимута имеем: 

σϕ−ασϕ
αϕ

=α
sinsincoscoscos

sincos
g

111

11
2t . 

Обратная задача на сфере. Даны географические координаты ϕ1, λ1, и ϕ2, λ2 точек Q1 и 
Q2; требуется найти длину геодезической линии s между этими точками, а также ее прямой 
α1 и обратный α2 азимуты. 

По теореме косинусов находим: 

,coscoscossinsincos 2121 ωϕϕ+ϕϕ=σ  

Рис. 4.1. Главные геодези-
ческие задачи на сфере 
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,12 λ−λ=ω  

,σ= Rs  при отрицательном ).(cos σ−π=σ Rs  

Применяя формулы котангенсов, получаем: 

ωϕϕ−ϕϕ
ωϕ

=α
coscossinsincos

sincos
g

2121

2
1t , 

2121

1
2 cossincossincos

sincos
tg

ϕϕ−ωϕϕ
ωϕ

=α . 

 

Решение главных геодезических задач на эллипсоиде на короткие расстояния. Преж-
де всего, имеются в виду расстояния ~ 30 км. Ознакомимся с решением по формулам со 
средними значениями аргументов. Материал излагается в соответствии с учебником [4, 
с.174-179]. Аналогичные формулы в несколько ином виде получены К.Ф. Гауссом. 

Прямая задача. Сферический треугольник Q1Q2P (рис. 4.1) спроектируем на новую сфе-
ру, близкую к поверхности эллипсоида. Радиус сферы примем равным радиусу кривизны 
первого вертикала Nm, вычисленному по средней геодезической широте Bm = (B1 + B2)/2. 
Точку пересечения нормали широты Bm с осью вращения эллипсоида примем за центр сфе-
ры. Стороны треугольника Q1Q2P спроектируем на новую сферу лучами, проведенными из её 
центра. При таком изображении разность долгот l на эллипсоиде будет точно равна разности 
долгот ω на сфере, длина геодезической линии s и ее азимуты практически равны длине ор-
тодромии и ее азимутам. Прямую задачу решают последовательными приближениями по 
формулам: 

;
cos

m

m

M

As=β ;
cos

sin

mm

m

BN

As=δ ;sin mBl=α  

;
24

2
1

22








 α+δ+β=b ;
24

1
22








 β−α+δ=l ).
24

223
1(

222 α−δ+β+α=a                (4.1) 

Решают задачу последовательными приближениями. В первом приближении полагают 
Bm = B1 и Am = A1. Во втором и последующих приближениях принимают: 

2/
1

;2/
1

aA
m

AbBBm +=+= . 

Окончательные значения искомых величин вычисляют как 
oaAAlLLbBB 180;; 121212 ±+=+=+= . 

Все угловые величины выражены в радианах. Для обеспечения точности 0,0001″ в коор-
динатах при расстояниях s<60 км достаточно ограничиться 3-4 приближениями. 

Обратная задача. По координатам B1, L1, B2, L2 находят: 

).1/(1/cos'

2/(

22222

211212

,,

,, ,)

mmmmmmm

m

NMcNBe

BBBLLlBBb

η+=η+==η

+=−=−=
 

Далее с достаточной точностью получают: 








 +−==
24
sin2

1cos
222

m
mm

Mll
bMAsQ , 
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;
24
sin

1cossin
222








 −+== m
mmm

Blb
BNlAsP                                (4.2) 

.
24

sin223
1sin

2222








 −++= m
m

Bllb
Bla  

Решение задачи завершается вычислениями по формулам: 

,,/tg 22 PQsQPAm +== .1802/,2/ 21
o

mm aAAaAA ±+=−=              (4.3) 

Все угловые величины даны в радианах. Точность результатов при вычислениях на любых 
широтах характеризуется табл. 4.2 [4, с. 179]. 

Таблица 4.2 
Точность решения задач по формулам 

со средними аргументами 
s, км ∆s, м ∆A" 
80 0,01 0,02 
200 0,1 0,1 
400 1 0,5 
600 5 1 
800 10 2 

Предельные погрешности ∆s в линиях и ∆A в азимутах зависят от длин сторон. При дли-
нах сторон до 800 км они не превышают графических погрешностей карт масштабов 
1:100 000. 

Решение главных геодезических задач на эллипсоиде на средние и большие расстоя-
ния. Современные возможности компьютерной техники позволяют без особых затруднений 
применять довольно трудоемкие с вычислительной точки зрения способы. Распространены 
также численные методы решения главных геодезических задач. 

Решение прямой задачи методом численного интегрирования дифференциальных 
уравнений геодезической линии. Для геодезической линии на эллипсоиде можно составить 
три следующих дифференциальных уравнения: 

.
sintg

;
cos

sin
;

cos
N

AB

ds

dA

BN

A

ds

dL

M

A

ds

dB ===  

Два первых уравнения верны для любой кривой на эллипсоиде вращения. Их легко полу-
чить, проектируя отрезок ds, ориентированный под азимутом A, на элементарные отрезки 
меридиана и параллели: 

.sincos

,cos

AdsBdLN

AdsMdB

=
=

 

Третье дифференциальное уравнение верно только для геодезической линии. Оно следует 
из дифференцирования уравнения геодезической линии на эллипсоиде вращения: 

.0cossin

,sin

=+
=

dAArdrA

constAr
 

Интегрируя дифференциальные уравнения по линии s от её начала до конца, получают: 
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.
sintg

180

,
cos

sin

,
cos

12

12

12

ds
N

AB
AA

ds
BN

A
LL

ds
M

A
BB

s

o

s

s

∫

∫

∫

=±−

=−

=−

 

Эти уравнения решают численно. В учебном пособии [8, с.59] предложен следующий ал-
горитм решения. Выбирается достаточно малый отрезок h линии s. Тогда 

,
cos

1 h
M

A
BB

i

i
ii +=+  

,
cos

sin
1 h

BN

A
LL

ii

i
ii +=+  

.
sintg

1801 h
N

AB
AA

i

iio
ii +±=+  

После каждого шага итерации, вычисленные в левой части значения подставляются в пра-
вую часть. Сначала берётся малый произвольный шаг h и с ним выполняются вычисления. 
Затем шаг h уменьшают в два раза и снова выполняют все вычисления. Если дважды полу-
ченные координаты конечной точки совпадают с заданной точностью, то вычисления пре-
кращаются, если нет, то шаг h уменьшают ещё в два раза и приближения продолжают. Одна-
ко, в учебных пособиях [4, с. 180-182; 9, с. 278-284; 5, с.52-54] применены более эффектив-
ные вычислительные методы, представляющие вариации метода Рунге-Кутта, показываю-
щие, что задачу можно решать даже на максимально большие расстояния. 

Решение обратной задачи на любые расстояния методом простой итерации. Метод 
опубликован в [5, с.52-54]. Его суть в следующем. 

1. В начальной точке P1 задают приближённые значения длины s’ геодезической линии и 
её азимута A’, полученные, например, из решения обратной задачи на сфере (рис. 4.2). 

2. Решают прямую задачу по дифференциальным формулам, используя метод Рунге-
Кутта-Фельберга RKF45 4-го и 5-го порядков, обеспечивающий субмиллиметровую точность 
для расстояний в диапазоне 0-20 000 км. 

3. Имеется заданная конечная точка P2 и её приближённое положение P3. Решая обратную 
задачу, находят малое расстояние q между этими точками. 

4. Вычисляют угол θ у вершины P3 как разность азиму-
тов линий P3 P2 и  P3 P1. 

5. Вычисляют поправки в азимут линии и в её длину по 
формулам: 

( ) .cos,'/arcsin θ=∆=∆ qssqA  
6. Исправляют этими поправками найденные в п.1 при-

ближенные значения азимута и длины линии. По исправ-
ленным значениям вновь выполняют вычисления п.2. 

Процесс итераций повторяют до тех пор, пока расхождения между вычисленными и за-
данными координатами конечной точки не станут допустимыми. 

Решение главных геодезических задач способом Бесселя. Ф. Б. Бессель - немецкий ас-
троном и геодезист (1784–1846). Способ Бесселя был опубликован в 1825 г. Способ отлича-

Рис.4.2. Решение обратной задачи 
на эллипсоиде простой итерацией 
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ется стройностью и строгостью решения. Он применим для вычисления кратчайших рас-
стояний любой длины между двумя точками в пределах полусфероида. В этом отношении он 
уникален и универсален. Формулы громоздки, однако в условиях современной вычислитель-
ной техники это не является проблемой. 

Способ основан на отображении эллипсоида на сфере. Геодезическая линия на сфере ото-
бражается дугой большого круга – ортодромией. На ней расположены три точки – Q0, Q1 и 

Q2 (рис. 4.3). Азимуты линии в этих точках A0, A1 и A2. 
Суть отображения следует из геометрической интерпре-
тации уравнения геодезической линии, которое может 
быть записано следующим образом: 

22110 sincossincossin AUAUA == , 

или 

)90sin(

sin

)90sin(

sin

1

2

2

1

U

A

U

A

−−
= , 

где U1, U2 — приведенные широты точек эллипсоида Q1, 
Q2, A0 — азимут геодезической линии на экваторе. Эта 
запись есть результат применения теоремы синусов к 

сферическому треугольнику Q1PQ2. 
Таким образом, отображение эллипсоида на сферу выполняется при следующих условиях: 

1) геодезическая линия изображается ортодромией — дугой большого круга; 2) на сфере ази-
муты ортодромии равны азимутам геодезической линии на эллипсоиде; 3) геодезическим 
широтам на эллипсоиде соответствуют приведенные широты на сфере. 

Взаимосвязь между длинами ортодромии σ = Q1Q2 и геодезической линии s на эллипсои-
де, а также между углом ω у полюса P и разностью долгот этих точек l = L2 - L1 устанавлива-

ется с помощью дифференциальных уравнений. Для 
этого рассмотрим бесконечно малые соответственные 
треугольники на эллипсоиде и на указанной сфере 
(рис.4.4). 

Для этих треугольников имеем: 

A
d

dU

ds

rdL
A

d

dU

ds

MdB
sin

cos
cos , =

σ
ω==

σ
= . 

После преобразований получаем: 

,, ω=σ= d
dU

dB

a

M
dLd

dU

dB
Mds  

где a — большая полуось эллипсоида. Дифференцируя формулы радиуса параллели 

BNUar coscos == , 
получаем: 

.
sin

sin

,sinsin

BM

Ua

dU

dB
dU

dB
BMUa

dU

dr

=

−=−=
 

Выразив синусы через тангенсы, получаем: 

Рис. 4.4. Элементарные треугольни-
ки эллипсоида и сферы R=1 

Рис. 4.3. Отображение геодезиче-
ской линии на сфере Бесселя 
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Ue
M

a

dU

dB 22 cos1−= . 

С учетом последнего выражения получаем: 

,cos1 22 σ−= dUeads                                                         (4.4) 

.cos1 22 ω−= dUedL                                                            (4.5) 

Интегрируя эти уравнения вдоль дуги большого круга между точками Q1 и Q2 (рис. 4.3), 
устанавливают зависимости между длинами s и σ, и углами l и ω. При этом имеют дело с так 
называемыми эллиптическими интегралами, которые можно решить численно, или разложе-
нием в ряды функций под знаком интеграла. Решением этих интегралов занимались многие 
учёные, предлагая свои варианты способов. Ознакомиться подробнее со способом Бесселя 
можно, например, по работам [4, 3]. Он использован также в [7]. 

Ниже рассмотрим решения в модификации [10]. В 1975 году Т. Vincenty опубликовал спо-
соб решения прямой и обратной геодезической задачи, отличающийся высокой точностью. 
Способ также описан в пособии [3]. В данной работе изменены некоторые обозначения и 
формулы. Приведены упрощенные формулы, однако обеспечивающие максимальную по-
грешность не более 0,00005″, или в линейной мере не больше 1,5 мм [10].  

В формулах использованы малая полуось b эллипсоида и его сжатие α, B – геодезическая 
широта, U – приведённая широта, l – разность геодезических долгот, s – длина геодезической 
линии, A0, A1 и A2 – азимуты геодезической линии в точках Q0, Q1 и Q2, ω – разность долгот 
на сфере, σ – угловое расстояние на сфере между точками Q1 и Q2, σ1 – угловое расстояние на 
сфере от экватора до точки Q1, σm – угловое расстояние на сфере от экватора до середины 
линии (рис. 4.3). 

Решение прямой задачи. Задача начинается с пересчёта геодезической широты в приве-
дённую широту и вычисления ряда вспомогательных величин. 

( ) 1tg1tg 1 BU α−= .                                                           (4.6) 

11 cos/tgtg 1 AU=σ .                                                          (4.7) 

110 sincossin AUA =                                                           (4.8) 

0
22 2cos' Aek = .                                                           (4.9) 
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,2512264
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k
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                                           (4.10) 

Итерациями вычисляется σ: 
,22 1 σ+σ=σm                                                            (4.11) 

( ) ,2cos21cos
4
1

2cossin 2







 σ+−σ+σσ=σ∆ mm BB                           (4.12) 

.σ∆+=σ
bA

s
                                                            (4.13) 

В первом приближении принимается ∆σ = 0. Итерации продолжаются до тех пор, пока 
изменения σ не будут меньше наперёд заданной величины. 

Вычисляется широта второй точки: 
,cossincoscossinsin 1112 AUUU σ+σ=  
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( )
.

sin11

sin
tg

2
2

2
2

U

U
B

−α−
=  

Вычисляется разность долгот: 

,
cossinsincoscos

sinsin
tg

111

1
AUU

A

σ−σ

σ
=ω  

( )[ ],cos344cos
16

2
0

2
oAAC −α+α=                                            (4.14) 

( ) ( )[ ]{ }.2cos21cos2cossinsin1 2
0 mm CCACl σ+−σ+σσ+σα−−ω=               (4.15) 

Определяется азимут на второй точке: 

.
coscoscossinsin

sin
tg

111

0
2 AUU

A
A

σ+σ−
=  

Под A2 можно понимать как азимут в направлении Q1Q2, так и азимут в обратном направ-
лении Q2Q1; они различаются на 180° и формулой тангенса это различие не фиксируется. 

Выражение (4.7) для величины σ1 найдено из сферического прямоугольного треугольника 
Q0Q1E1 (рис. 4.3). 

Решение обратной задачи. Последовательными приближениями вычисляются на сфере 
разность долгот ω и расстояние σ. В первом приближении принимается ω = l. Далее: 

.cossintg,cos1sin

,coscoscossinsincos

2

2121

σσ=σσ−=σ

ω+=σ UUUU
                                     (4.16) 

,sinsincoscossin 210 σω= UUA                                              (4.17) 

,sin1cos 0
2

0
2 AA −=  

,cossinsin2cos2cos 0
2

21 AUUm −σ=σ                                       (4.18) 

( ) ( )[ ]{ }.2cos21cos2cossinsin1 2
0 mm CCACl σ+−σ+σσ+σα−+=ω               (4.19) 

В (4.19) подставляются результаты из формулы (4.14). Приближения продолжаются, пока 
изменения ω не станут допустимыми. Вычисляется длина линии на эллипсоиде: 

( )σ∆−σ= bAs , 

где ∆σ, коэффициенты A и B определяется формулами (4.12) и (4.10). 

Вычисляются азимуты: 

,
coscossinsincos

sincos
tg

2121

2
1 ω−

ω=
UUUU

U
A  

.
cossincoscossin

sincos
tg

2121

1
2 ω+−

ω=
UUUU

U
A  

Формулы для обратной задачи не дадут результата, если величина ω, рассчитанная по 
формуле (4.19) по абсолютной величине окажется более π. 
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Замечания по способу. В [10] отмечается, что на экваторе формулы (4.7) и (4.18) стано-
вятся неопределимыми. Однако, если деление на ноль исключить, то решение будет пра-
вильным. В этом случае B =C = 0 и ∆σ, l, ω будут вычислены правильно. Такие выражения, 
как для tgB2, tgA2, sin2σ и tgA1, достаточно вычислить однажды, сохранить и использовать 
дальше. Если нужен обратный азимут A2 (азимут с Q2 на Q1), то это надо иметь в виду при 
его вычислении. 

В публикации [Vincenty] приведён лишь алгоритм способа. Подробных выводов нет. По-
этому в формулах для tgB2 и sin2σ нами использованы их более простые исходные выраже-
ния. Формула (4.17) может быть получена из сферического треугольника Q1PQ2  по теореме 
синусов (рис. 4.3): 

2121

11

2

1

coscos

sin

coscos
sincos

cos
sin

sin
sin

0

UU

A

UU

AU

U

A ===
σ
ω

. 

Отсюда непосредственно следует (4.17). 

Формула (4.18) может быть получена следующим образом. Из сферических треугольников 
Q0PQ1 и Q0PQ2, применением теоремы косинусов к сторонам “полюс - экватор”, имеем: 

.cos)sin(sin,cossinsin 012011 AUAU σ+σ=σ=  

Перемножив соответственно левые и правые части, удвоив эти произведения и в правой 
части заменив произведение синусов сторон разностью косинусов от суммы (2σm=2σ1+σ) и 
разности этих сторон (σ), получим выражение (4.18). 

Решение задач по локсодромии. В специальных случаях, например, в навигационной 
практике, прямую и обратную задачи решают не по геодезической линии, а по локсодромии. 

Из элементарного треугольника на поверхности эллипсоида враще-
ния (рис. 4.5) имеем: 

.tg

,sin

,cos

A
MdB

rdL

dsArdL

dsAMdB

=

=
=

 

В случае локсодромии азимут сохраняет постоянное значение. Ин-
тегрируя эти выражения по линии S от точки Q1 до Q2, получаем [2, 
с.151]: 

( )
( ).tg

,sin

,cos

1212

12

12

qqALL

ASLLr

ASXX

m

−=−
=−

=−
 

В формулах X, rm, q – соответственно длина дуги по меридиану от экватора до заданной 
точки, некий промежуточный радиус параллели между геодезическими координатами точек 
Q1 и Q2, изометрическая широта, вычисляемая от экватора до рассматриваемой параллели. 
Как уже отмечалось (Лекция 3), 
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Рис. 4.5. Элемен-
тарный треуголь-
ник на эллипсоиде 
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Алгоритм решения прямой задачи по локсодромии. Исходными величинами являются 
широта B1, долгота L1 исходной точки, прямой азимут A1 и длина локсодромии S до опреде-
ляемой точки. Определяемыми являются долгота L2, широта B2 искомой точки и обратный 
азимут A2. Задача решается в нижеследующей последовательности [7]. 

1. По широте B1 вычисляется длина дуги меридиана X1. 
2. Определяется длина дуги меридиана от экватора до параллели искомой точки 

112 cosASXX += . 

3. По дуге меридиана X2 вычисляется широта B2 (Лекция 3). 
4. По геодезическим широтам B1 и B2 вычисляются изометрические широты q1 и q2. 
5. Определяется долгота искомого пункта 

11212 )tg( AqqLL −+= . 

6. Вычисляется обратный азимут A2. Он отличается от прямого азимута на 180°. 

Алгоритм решения обратной задачи по локсодромии. Исходными величинами являют-
ся широты B1, B2 и долготы L1, L2 двух пунктов. Необходимо найти длину локсодромии S 
между пунктами, а также прямой A1 и обратный A2 азимуты. Алгоритм решения задачи сле-
дующий. 

1. Вычисляются изометрические широты q1 и q2, разность долгот и находятся азимуты. 

π+=−−= 1212121 ),()(tg AAqq/LLA . 

2. По широтам B1, B2 вычисляются длины дуг меридианов X1 и X2. 
3. Определяется длина S локсодромии. При этом, если B1 ≠ B2, тогда 

112 cos/)( AXXS −= , 

иначе 
)(cos 121 LLBNS −= . 

На рис. 4.6 приведены построения в косой азимутальной равновеликой проекции орто-
дромии и локсодромии. Ортодромия почти прямой линией пересекает Атлантический океан, 

Южную Америку и заканчивается в Тихом океане. 
Локсодромия в данном случае очень близка к орто-
дромии. Над Атлантическим океаном она проходит 
несколько южнее ортодромии, а над Тихим океаном 
– несколько севернее ортодромии. Иными словами, 
ортодромия располагается ближе к полюсам, а лок-
содромия – ближе к экватору. Расстояние по локсо-
дромии на эллипсоиде Красовского оказалось рав-
ным 19 890 605,69 м – длиннее геодезической ли-
нии всего на 390,6 км или на 2%. 

Следует заметить, что на меридианах и на эква-
торе линии кратчайшего расстояния и постоянного 
азимута совпадают. Различие между длинами от-
резков ортодромии и локсодромии проявляется 
сильнее всего, если отрезок расположен вдоль па-
раллели. При длинах отрезков до 8200 км на 30° па-
раллели и до 1900 км на 70° параллели эти различия 

достигают 3% [1]. 

Рис. 4.6. Изображения ортодромии 
и локсодромии 
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Контрольные вопросы 

1. Способы решения главных геодезических задач. Представление о точности их решений. 
2. Решения прямой и обратной задач на сфере. 
3. Решение прямой задачи методом численного интегрирования дифференциальных урав-

нений геодезической линии. Решение обратной задачи на любые расстояния методом 
простой итерации. 

4. Решение главных геодезических задач способом Бесселя. Условия выбора сферы. Диф-
ференциальные уравнения взаимосвязи линейных и угловых элементов на эллипсоиде 
и на сфере. Понятие о способе T. Vincenty. 


